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Logarithms 
 
Logarithms are defined with respect to a particular base, but have a set of 
properties regardless of the base. The base may be any positive number, but 
there are three very commonly used bases; 10, 2  and e (footnote1). 
 
Definition 
 
Let b be the base. If for a given number a,   then x is said to be the 
logarithm (base b) of a.  
 
Logarithms in base 10 
 
If   then x is said to be the logarithm (base 10) of a. 
 
 

10-2=0.01 log10 0.01 = -2 
10-1=0.1 log10 0.1 = -1 

100=1 log10 1 = 0 
101=10 log10 10 = 1 

102=100 log10 100 = 2 
103=1000 log10 1000 = 3 

 
 
Logarithms in base 2 
 
If   then x is said to be the logarithm (base 2) of a. 
 
 

2-2=0.25 log2 0.25 = -2 
2-1=0.5 log2 0.5 = -1 

20=1 log2 1 = 0 
21=2 log2 2 = 1 
22=4 log2 4 = 2 
23=8 log2 8 = 3 

 
 
Logarithms in base e 
 
If   then x is said to be the logarithm (base e) of a, x can also be said to be 
be the natural or Napierian logarithm, and is sometimes denoted by ln. 
 

e-2=0.1353352832 loge  0.1353352832= -2 
e-1=0.367879441171442 loge  0.367879441171442= -1 

e0=1 loge 1 = 0 
e1=2.71828 18284 loge  2.71828 18284= 1 

 
1 e is the mathematical constant equal to 2.71828 18284 59045 23536 to 20 decimal places. 
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e2=7.38905609893065 loge  7.38905609893065= 2 
e3=20.0855369231877 loge 20.0855369231877 = 3 

 
Graphs of log(x) 
 
If we plot log(x) for a range of values of x and in the three most important bases 
then the following graphs are obtained. 

 
 

 
 
 

Although the graphs are different for different bases, they have a number of 
characteristics in common: 
 

(i) they all pass through the point (1,0); log (1)=0 in all bases 
(ii) the graph reaches the limit of  as x tends to zero 
(iii) the graphs “flatten out” as x tends to  . 

 
Changing base of Logarithms 
 
Log graphs essentially have the same shape; multiplying the log graph in one 
base by a number gives the log graph in another base: 
 

 
 

For example with  and 𝑐 = 10:  
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Properties are true for logarithms in any base. 
 
These properties made logarithms useful in the days before widespread use of 
computers. 
 
(i) 

 
 
For example 

 
 
In the days before there was a widespread availability of computers, for a 
difficult multiplication (say x and y) first the logs of the two numbers would be 
looked up (giving ). He numbers would be added ( to give 

, which is equal to . By taking the antilogarithm (of 
) from the same book of tables, the value of  is obtained. 

 
(ii) 

 
 
For example 

 
 
(iii) 

 
 
For example 

 
 
(iv) 

 
 
For example 

 
 
(v) 

 
 
For example 

 
 

A further tutorial with more examples and exercises is given by Mathcentre2 and 
Pplato3. 
 

 

 
2 Logarithms (Mathcentre) 
3 Logarithms (Pplato) 
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https://www.mathcentre.mathematics.me.uk/algebra/logarithms/index.htm
https://www.pplato.mathematics.me.uk/algebra/logarithms/index.htm

