Logarithms

Logarithms are defined with respect to a particular *base*, but have a set of properties regardless of the base. The base may be any positive number, but there are three very commonly used bases; 10, 2 and *e* (footnote¹).

<u>Definition</u>

Let *b* be the base. If for a given number *a*, $b^x = a$, then *x* is said to be the logarithm (base *b*) of *a*.

Logarithms in base 10

If $10^x = a$, then *x* is said to be the logarithm (base 10) of *a*.

10-2=0.01	$\log_{10} 0.01 = -2$
10-1=0.1	$\log_{10} 0.1 = -1$
100=1	$\log_{10} 1 = 0$
101=10	$\log_{10} 10 = 1$
10 ² =100	$\log_{10} 100 = 2$
103=1000	$\log_{10} 1000 = 3$

Logarithms in base 2

If $2^x = a$, then *x* is said to be the logarithm (base 2) of *a*.

2-2=0.25	$\log_2 0.25 = -2$
2-1=0.5	$\log_2 0.5 = -1$
20=1	$\log_2 1 = 0$
21=2	$\log_2 2 = 1$
22=4	$\log_2 4 = 2$
23=8	$\log_2 8 = 3$

Logarithms in base e

If $e^x = a$, then x is said to be the logarithm (base *e*) of *a*, x can also be said to be be the natural or Napierian logarithm, and is sometimes denoted by ln.

e ⁻² =0.1353352832	log _e 0.1353352832= -2
e ⁻¹ =0.367879441171442	loge 0.367879441171442=-1
$e^{0}=1$	log _e 1 = 0
e^{1} =2.71828 18284	loge 2.71828 18284= 1

 $^{^{1}}$ e is the mathematical constant equal to 2.71828 18284 59045 23536 to 20 decimal places.

<i>e</i> ² =7.38905609893065	log _e 7.38905609893065=2
e ³ =20.0855369231877	log _e 20.0855369231877 = 3

<u>Graphs of log(x)</u>

If we plot log(x) for a range of values of x and in the three most important bases then the following graphs are obtained.

Although the graphs are different for different bases, they have a number of characteristics in common:

- (i) they all pass through the point (1,0); log (1)=0 in all bases
- (ii) the graph reaches the limit of $-\infty$ as *x* tends to zero
- (iii) the graphs "flatten out" as x tends to ∞ .

Changing base of Logarithms

Log graphs essentially have the same shape; multiplying the log graph in one base by a number gives the log graph in another base:

$$\log_b x = \frac{\log_c x}{\log_c b}$$
.

For example with x = 4, b = 2 and c = 10: $\log_2 4 = \frac{\log_{10} 4}{\log_{10} 2} = \frac{0.6020599913}{0.3010299957} = 2$

Properties are true for logarithms in any base.

These properties made logarithms useful in the days before widespread use of computers.

(i) $\log(xy) = \log(x) + \log(y)$

For example $\log_2(8) = \log_2(4 \times 2) = \log_2(4) + \log_2(2) = 2 + 1 = 3.$

In the days before there was a widespread availability of computers, for a difficult multiplication (say x and y) first the logs of the two numbers would be looked up (giving log(x) and log(y)). He numbers would be added (to give log(x) + log(y), which is equal to log(xy). By taking the *antilogarithm* (of log(xy)) from the same book of tables, the value of xy is obtained.

(ii)
$$\log(x/y) = \log(x) - \log(y)$$

For example
$$\log_2(2) = \log_2(4/2) = \log_2(4) - \log_2(2) = 2 - 1 = 1.$$

(iii)
$$\log(x/y) = \log(x) - \log(y)$$

For example $\log_2(2) = \log_2(4/2) = \log_2(4) - \log_2(2) = 2 - 1 = 1.$

$$log(1/y) = -log(y)$$

For example $\log_{10}\left(\frac{1}{100}\right) = -2 = -\log_{10}(100).$

 $(v) \\ log(x^p) = p log(x)$

For example $\log_{10}(1000) = \log_{10}(10^3) = 3 \log_{10}(10) = 3 \times 1 = 3$.

A further tutorial with more examples and exercises is given by Mathcentre² and Pplato³.

² Logarithms (Mathcentre)

³ Logarithms (Pplato)